This is ACA \# 25. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. Click here to show a set of five ACA25 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

## 1. Determine $K$ for each of the following reactions;

a) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$
$K=5.5 \mathrm{e}-10 \quad 56 \%$

In the equation $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$is behaving as a base. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$is the conjugate base of the weak acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. To determine the K for the reaction we must separate the equation into two equations whose $K$ we know. The two equations are,
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(1 / \mathrm{K}_{\mathrm{a}}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\right)$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}\left(\mathrm{K}_{\mathrm{w}}\right)$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \mathrm{K}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-14} / 1.8 \times 10^{-5}$
$K_{b}=5.6 \times 10^{-10}$.
b) $\mathbf{N H}_{3}+\mathbf{H}^{+} \rightarrow \mathbf{N H}_{\mathbf{4}}{ }^{+}$
$K=1.8 \mathrm{e} 9 \quad 17 \%$
$22 \% \mathrm{~K}_{0}\left(\mathrm{NH}_{3}\right)$

This reaction is a neutralization reaction because it involves a weak base $\left(\mathbf{N H}_{3}\right)$ reacting with a strong acid $\left(\mathrm{H}^{+}\right)$. For this type of neutralization reaction two reactions are needed to determine $K$. The two equations are,
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}\left(\mathrm{K}_{\mathbf{b}}\left(\mathrm{NH}_{3}\right)\right)$

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\left(1 / \mathrm{K}_{\mathrm{w}}\right)
$$

$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+} \mathrm{K}=\mathrm{K}_{\mathrm{b}} / \mathrm{K}_{\mathrm{w}}=1.8 \times 10^{-5} / 1.0 \times 10^{-14}$
$K=1.8 \times 10^{9}$
This value is a very large number. That is what we expect for any neutralization reaction.

## 2. Consider the solution below and indicate which of the following is the best classification;

## Classification

Weak Acid<br>Weak base<br>Strong Acid<br>Strong base<br>Salt (SA/SB)<br>Salt (SA/WB)<br>Salt (WA/SB)<br>Common Ion<br>Buffer<br>Neutralization

a) 0.500 M HClO
weak acid
$89 \%$
HClO is not the formula for a strong acid, so it must be a weak acid.
b) $\mathbf{0 . 5 0 0} \mathrm{M}\left(\mathbf{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N} \quad 83 \%$
weak base
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ is a weak base. The nitrogen atom has a lone pair and can accept a proton $\left(\mathrm{H}^{+}\right)$. The $\mathrm{C}_{2} \mathrm{H}_{5}$ group is the same as $\mathrm{CH}_{3} \mathrm{CH}_{2}$ group which we learned about in the Survival Organic laboratory and cannot accept a proton $\left(\mathbf{H}^{+}\right)$.
c) $\mathbf{0 . 5 0 0} \mathrm{M} \mathrm{NH}_{\mathbf{4}} \mathrm{ClO}_{4}$
salt (SA/WB) $67 \%$
$\mathrm{NH}_{4} \mathrm{ClO}_{4}$ is a salt of a weak base $\left(\mathrm{NH}_{3}\right)$ and a strong acid $\left(\mathrm{HClO}_{4}\right)$ and will behave as a weak acid in solution.

## d) $0.500 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and 0.500 M NaHCO 3

common ion (WB/CA) C $/ \%$
This mixture is a buffer/common ion. $\mathrm{NaHCO}_{3}$ is a salt of a strong base $(\mathrm{NaOH})$ and a weak acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ so $\mathrm{Na}^{+}$will not affect the pH of the solution so it can be neglected leaving $\mathrm{HCO}_{3}{ }^{-} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ is a salt of a strong base $(\mathrm{NaOH})$ and a weak acid $\left(\mathrm{HCO}_{3}{ }^{-}\right)$ and $\mathrm{Na}^{+}$will not affect the $\mathbf{p H}$ of the solution so it can be neglected leaving $\mathrm{CO}_{3}{ }^{2-}$. $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ differ by a proton so are a weak acid and its conjugate base. This meets the definition of a buffer solution/common ion solution.

## e) $0.500 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ and 0.500 M KOH

neutralization $44 \%$

When $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ and KOH are mixed a neutralization reaction will occur. This is a mixture of a weak acid and a strong base that are unrelated.

## 3. Given 500. mLs of a solution that is $0.100 \mathrm{M} \mathrm{NH}_{3}$ and $0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ ?

a) Write the balanced chemical equation that can be used to calculate the $\mathbf{p H}$ of this solution.
$\mathrm{NH} 3(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})-->\mathrm{NH}^{\wedge}+(\mathrm{aq})+\mathrm{OH}^{\wedge}-(\mathrm{aq}) 39^{\circ} \%$
$\mathrm{NH}_{3}$ is a weak base and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is a salt of a weak base and a strong acid. So $\mathrm{NO}_{3}{ }^{-}$is the conjugate base of the strong acid $\mathrm{HNO}_{3}$ and does not affect the pH of the solution so it can be neglected. After removing the $\mathrm{NO}_{3}{ }^{-}$ion the solution is a mixture of $\mathbf{N H}_{3}$ and $\mathrm{NH}_{4}{ }^{+}$. This is a weak base and its conjugate acid, also known as a buffer solution.

The reaction is $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
This reaction works because it contains both the weak base $\left(\mathbf{N H}_{3}\right)$ and the conjugate acid $\left(\mathrm{NH}_{4}^{+}\right)$and $\mathrm{OH}^{-}$which allows the determination of the pH .
b) What is the value of $K$ for this reaction?
$\mathrm{K}=1.8 \mathrm{e}-5 \quad 33 \%$
Since $\mathbf{N H}_{3}$ is a weak base we can locate the $\mathbf{K}_{\mathbf{b}}$ in the table of weak base equilibrium constants. It has a value of $1.8 \times 10^{-5}$.
c) Calculate the $\mathbf{p H}$ of the solution. $\mathbf{p H}=9.26 \quad \exists 3 \%$

|  | $\mathrm{NH}_{3}(\mathrm{aq})+$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\rightleftarrows$ | $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$ | $\mathrm{OH}^{-}(\mathrm{aq})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | 0.100 | - |  | 0.100 | $\sim 0$ |
| C | -x | - |  | +x | +x |
| E | $0.100-\mathrm{x}$ | - |  | $0.100+\mathrm{x}$ | +x |

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
$1.8 \times 10^{-5}=[0.100+x][x] /[0.100-x]$
assume $0.1-\mathrm{x}=0.1$
$1.8 \times 10^{-5}=[0.100][x] /[0.100]$
$1.8 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{OH}^{-}\right]$
The pOH of the solution is 4.74 and the pH is $14-\mathrm{pOH}$ which is 9.26 . The solution is basic.
d) If $\mathbf{0 . 0 0 5 0}$ moles of NaOH is added to the solution would you expect the pH of the

## solution to increase, decrease or remain the same?

increase 610/0
The pH should increase. Adding a strong base to a buffer will cause the amount of the weak acid to decrease and the amount of the conjugate base to increase. This will make the $\mathbf{p H}$ more basic.

## e) Calculate the new $\mathbf{p H}$ of the solution.

$\mathbf{p H}=9.34 \quad 16 \% 6$
The strong base that is added to the solution will be neutralized by the acid component of the buffer. We always do neutralization reactions in terms of moles, so the initial moles of $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3}$ are,
$0.500 \mathrm{~L}\left(0.100 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+} / \mathbf{L} \mathrm{L}\right)=0.0500 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+}$
$0.500 \mathrm{~L}\left(0.100 \mathrm{~mol} \mathrm{NH}_{3} / \mathbf{L}\right)=0.0500 \mathrm{~mol} \mathrm{NH}_{3}$

|  | $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$ | $\mathrm{OH}^{-(\mathrm{aq})}$ | $\rightleftarrows$ | $\mathrm{NH}_{3}(\mathrm{aq})+$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | 0.0500 | 0.0050 |  | 0.0500 | - |
| C | -0.0050 | -0.0050 |  | +0.0050 | - |
| E | 0.0450 | 0 |  | 0.0550 | - |

The solution following the neutralization of the strong base ends up (the $E$ row) as a solution of a weak base and its conjugate acid, which is a buffer. So to calculate the pH we can use the same equation as was used to calculate the initial pH of the solution. Remember when calculating pH the amount of each species must expressed in molarity. Converting the amount of $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3}$ to $\mathrm{mol} / \mathrm{L}$,
$0.0450 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+} / 0.500 \mathrm{~L}=0.0900 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$
$0.0550 \mathrm{~mol} \mathrm{NH}_{3} / 0.500 \mathrm{~L}=0.110 \mathrm{M} \mathrm{NH}_{3}$

|  | $\mathrm{NH}_{3}(\mathrm{aq})+$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\rightleftarrows$ | $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$ | $\mathrm{OH}^{-}(\mathrm{aq})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | 0.110 | - |  | 0.0900 | $\sim \mathbf{0}$ |
| C | -x | - |  | +x | +x |
| E | $0.110-\mathrm{x}$ | - |  | $0.0900+\mathrm{x}$ | +x |

## $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$

$1.8 \times 10^{-5}=[0.0900+x][x] /[0.110-x]$
assume $0.09-\mathrm{x}=0.09$
$1.8 \times 10^{-5}=[0.090][x] /[0.110]$
$2.2 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{OH}^{-}\right]$
The pOH of the solution is 4.66 and the pH is $14-\mathrm{pOH}$ which is 9.34 . The change in pH is 0.08 .
4. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
5. If there is one question you would like to have answered in lecture, what would that question be?
nothing

